

FedCert: Federated Accuracy Certification

Minh Hieu Nguyen^{1*}, <u>Huu Tien Nguyen¹</u>*, Trung Thanh Nguyen², Manh Duong Nguyen¹, Trong Nghia Hoang³, Truong Thao Nguyen⁴, Phi Le Nguyen¹

*Equal Contribution ¹Hanoi University of Science and Technology, Vietnam ²Nagoya University, Japan ³Washington State University, United States ⁴National Institute of Advanced Industrial Science and Technology (AIST), Japan

Federated Learning

Federated Learning (FL)

- Each client trains a local model using its data
- All the local models are aggregated to generate a global model

- Preserve data privacy
 - Healthcare
 - Finance
- Leverage computing resources from multiple clients

Problem Definition

Certified Accuracy

Certified Accuracy

Certified Accuracy: C(f, S, r) = $\frac{n_S^{robust}}{n_S} - \begin{bmatrix} Dataset S with n_S samples \\ Classifier f is robust at n_S^{robust} samples within radius r \end{bmatrix}$

Related Work

- VW: Volume-based Weighted-sum Method
 - $n = \sum_{i=1}^{N} n_i$ with n_i is the cardinality of the local dataset D_i

Drawback: VW leads to less reliable evaluations of the global model's performance when client data is highly heterogeneous

[1] H. R. Roth et al., "NVIDIA FLARE: Federated learning from simulation to real-world," Computing Research Repository arXiv Preprints, arXiv:2210.13291, 2022

Motivation

Methodology – Overview

8

Methodology – Client Side

[2] J.Cohen et al., "Certified adversarial robustness via randomized smoothing," in Proceedings of the 36th International Conference on Machine Learning, 2019, pp. 1310–1320.

Methodology – Server Side

Algorithm 1 Grouping Algorithm

1: Input: Small clients \mathcal{SC} , large clients \mathcal{LC} , threshold τ 2: Sort SC in ascending order of data size n_i 3: Initialize $\mathcal{V} \leftarrow \emptyset$; $Q \leftarrow \text{Queue}(\mathcal{SC})$ 4: while $Q \neq \emptyset$ do Initialize virtual client $V \leftarrow \emptyset$ 5: while $n_V < \tau$ and Q is not empty do 6: $C \leftarrow Q.dequeue(); V \leftarrow V \cup C$ 7: end while 8: 9: Add V to \mathcal{V} 10: end while Virtual client V: 11: $G \leftarrow \mathcal{LC} \cup \mathcal{V}$ • $n_V = \sum_{j=1}^m n_j$ 12: **Return** *G* • $p(D_V) = \sum_{j=1}^{m} \frac{n_j}{n_V} p(D_j)$ • $c(\theta, D_V, r) = \sum_{j=1}^{M} \frac{n_j}{n_V} c(\theta, D_j, r)$

Methodology – Server Side

Methodology – Server Side

Find the optimal α^* from all *T* test rounds:

$$\boldsymbol{\alpha}^*, \mathbf{G}^* = \underset{t=\{1,\dots,T\}}{\operatorname{argmin}} \left\| p(S) - \sum_{i=1}^{\mathsf{V}} \alpha_i^t p(D_i) \right\|$$

Approximation certified accuracy

Experiment Settings

Methods

- VW: Volume-based Weighted-sum
- AP: *FedCert* without client grouping
- GA: *FedCert* with client grouping

• Backbone of θ

- ResNet-18
- MobileNetV2

• FL training algorithm

- FedAvg
- FedProx
- Scaffold

Datasets

- CIFAR-10
- CIFAR-100
- Split
 - 50000 images for the local datasets
 - 10000 images for the target test dataset
- The local datasets are distributed to clients using different types of non-IID distributions
 - Pareto
 - Dirichlet

Performance of Approximation Method

TABLE I: Performance of three approximation methods for estimating certified accuracy with different FL settings

	Datasat	Client Partition		RMSE		MAPE		
	Dataset		AP	GA	VW	AP	GA	VW
net-18	CIFAR-10	Dirichlet	0.021	0.014	0.061	0.059	0.055	0.192
	CIFAR-10	Pareto	0.014	0.008	0.032	0.044	0.016	0.102
Resi	CIFAR-100	Dirichlet	0.061	0.036	0.056	0.464	0.273	0.445
	CIFAR-100	Pareto	0.019	0.007	0.052	0.370	0.187	1.036
inetv2	CIFAR-10	Dirichlet	0.103	0.050	0.109	0,285	0.145	0.337
	CIFAR-10	Pareto	0.034	0.009	0.062	0.249	0.048	0.556
Mobile	CIFAR-100	Dirichlet	0.003	0.001	0.006	0.187	0.039	0.060
	CIFAR-100	Pareto	0.008	0.005	0.060	0.227	0.084	1.579

GA consistently outperforms both AP and VW methods **Client grouping improving the performance of FL systems**

Impact of the non-IID degree

TABLE II: Impact of the data distribution on the performance of proposed methods (ResNet-18, CIFAR-10 dataset, FedAvg)

Client	$ig egin{array}{c} eta \\ ig \end{array}$		RMSE		MAPE		
Partition		AP	GA	VW	AP	GA	VW
	0.1	0.021	0.014	0.061	0.059	0.055	0.192
et	0.3	0.046	0.025	0.122	0.179	0.073	0.464
chl	0.5	0.037	0.014	0.088	0.106	0.032	0.252
irii	1	0.053	0.065	0.142	0.124	0.181	0.447
Д	2	0.030	0.079	0.134	0.126	0.330	0.576
	3	0.033	0.053	0.152	0.077	0.153	0.475
	2	0.026	0.011	0.125	0.113	0.049	0.552
<u>to</u>	3	0.014	0.008	0.032	0.044	0.016	0.102
are	4	0.021	0.017	0.024	0.146	0.110	0.155
P	5	0.017	0.005	0.122	0.054	0.011	0.364
	6	0.019	0.005	0.052	0.038	0.011	0.112

For the Pareto partition, GA consistently shows superior performance with the lowest RMSE and MAPE values in most cases.

Impact of the non-IID degree

TABLE II: Impact of the data distribution on the performance of proposed methods (ResNet-18, CIFAR-10 dataset, FedAvg)

Client	eta	RMSE			MAPE				
Partition		AP	GA	VW	AP	GA	VW		
	0.1	0.021	0.014	0.061	0.059	0.055	0.192		
et	0.3	0.046	0.025	0.122	0.179	0.073	0.464		
chl	0.5	0.037	0.014	0.088	0.106	0.032	0.252		
irri	1	0.053	0.065	0.142	0.124	0.181	0.447		
Д	2	0.030	0.079	0.134	0.126	0.330	0.576		
	3	0.033	0.053	0.152	0.077	0.153	0.475		
	2	0.026	0.011	0.125	0.113	0.049	0.552		
to	3	0.014	0.008	0.032	0.044	0.016	0.102		
are	4	0.021	0.017	0.024	0.146	0.110	0.155		
P	5	0.017	0.005	0.122	0.054	0.011	0.364		
	6	0.019	0.005	0.052	0.038	8.011	0.112		
AP shows competitive					GA outperforms both AP and				
nerformar	performance and outperforms GA					methods at $\beta = [0.1, 0.2, 0.5]$			

Impact of the non-IID degree

TABLE II: Impact of the data distribution on the performance of proposed methods (ResNet-18, CIFAR-10 dataset, FedAvg)

Client			RMSE		MAPE			
Partition	μ	AP	GA	VW	AP	GA	VW	
	0.1	0.021	0.014	0.061	0.059	0.055	0.192	
et	0.3	0.046	0.025	0.122	0.179	0.073	0.464	
chl	0.5	0.037	0.014	0.088	0.106	0.032	0.252	
irri	1	0.053	0.065	0.142	0.124	0.181	0.447	
D	2	0.030	0.079	0.134	0.126	0.330	0.576	
	3	0.033	0.053	0.152	0.077	0.153	0.475	
	2	0.026	0.011	0.125	0.113	0.049	0.552	
to	3	0.014	0 008	0.032	0.044	0.016	0.102	
are	4	0.021	0.017	0.024	0.146	0.110	0.155	
P	5	0.017	0.005	0.122	0.054	0.011	0.364	
	6	0.019	0.005	0.052	0.038	0.011	0.112	

When the data distribution becomes less skewed, grouping the data from two or more clients may result in group imbalance

Robustness to the FL algorithm

TABLE III: Robustness of the proposed methods to the FL algorithm (ResNet-18, CIFAR-10 dataset, Dirichlet, $\beta = 0.1$)

Different desired data distributions

Figure 1. Performance under different desired data distributions (PS) and the test sample distributions of all clients (PD). (ResNet-18, CIFAR-10 dataset, Pareto, β = 2, FedAvg)

Conclusion

- Propose a novel algorithm FedCert
 - Incorporating the client grouping algorithm
 - Leveraging certified accuracy principle
 - Offers a structured approach to enhance the robustness of FL models against adversarial perturbations
- Results
 - Significant improvements in accurately evaluating the robustness of the FL system on the CIFAR-10 and CIFAR-100 datasets
- Future Work
 - Further optimizing the algorithm and exploring its applicability to diverse datasets and FL scenarios.