DCPsolver: Enhancing DNS Cache Poisoning Defenses with Resolver-Based SmartNICs

Bharath Kollanur bkolla1@lsu.edu Kurt Friday kfriday1@lsu.edu Elias Bou-Harb ebouharb@lsu.edu

Louisiana State University, LA, USA

School of Electrical Engineering & Computer Science

The 22nd International Symposium on Network Computing and Applications CUEB, Bertinoro(FC), Italy

College of Engineering School of Electrical Engineering & Computer Science

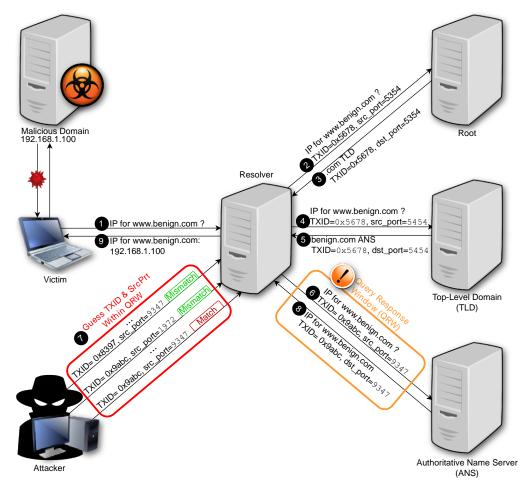
Introduction

Problem Statement

- DNS is essential for translating domain names into IP addresses but remains vulnerable to cachepoisoning attacks.
- Traditional defenses mainly address off-path attacks, leaving on-path attacks a major risk.
- Adoption challenges for existing solutions like DNSSEC hinder broader protection.

Objective:

Introduce DCPsolver, a solution leveraging SmartNICs to detect and mitigate on- and off-path DNS Cache Poisoning (DCP) attacks in real-time.



Background

What is DNS Cache Poisoning?

DNS Cache Poisoning is an attack where an adversary injects false DNS records into a resolver's cache, redirecting users to malicious sites.

- Types of Attacks:
 - Off-path attacks: The attacker guesses the Transaction
 ID (TXID) and source port, sending spoofed responses
 to poison the cache.
 - On-path attacks (Man-in-the-Middle, MITM): The attacker intercepts DNS communication between the resolver and the authoritative server, injecting false

10/26/2024

records.

Background

SmartNICs (Smart Network Interface Cards): Programmable NICs that go beyond standard packet forwarding, enabling in-network processing and custom packet manipulation.

Why Use SmartNICs for DNS Security?

- SmartNICs like Nvidia's Bluefield-2 can monitor DNS traffic at speeds up to 100 Gbps, detecting and mitigating attacks in real-time.
- They provide a secure, efficient defense, preventing malicious traffic from reaching the host CPU.
- Unlike DNSSEC, which requires significant infrastructure changes, SmartNICs integrate seamlessly into existing networks.

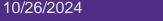
Threat Model

Assumptions:

- Attack Surface: The target system is a recursive DNS resolver vulnerable to both on-path (Man-in-the-Middle, MITM) and off-path attacks.
- **No DNSSEC:** DNSSEC is not implemented, making the resolver susceptible to DNS cache poisoning attacks.

Attack Scenarios:

- The adversary can send DNS queries to the resolver and may intercept legitimate DNS responses.
- The adversary has network access to manipulate packets at key points, particularly during on-path attacks.

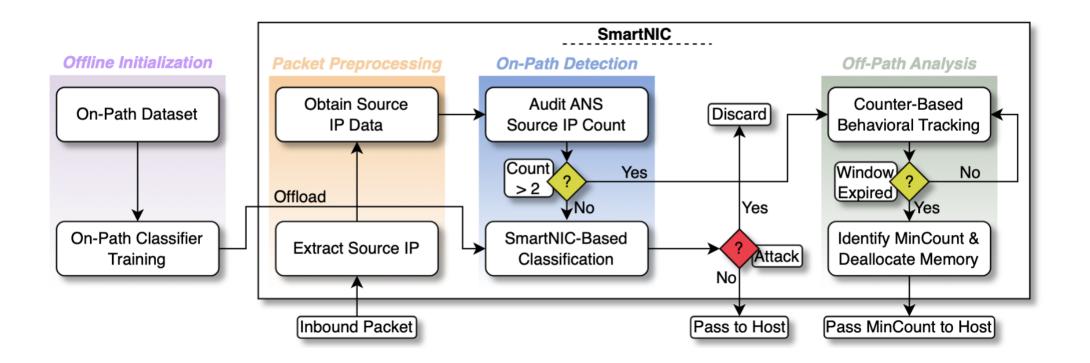


Overview of DCPsolver

- **DCPsolver** uses **SmartNICs** for real-time **DNS traffic inspection** and **attack mitigation** directly within the network interface card, reducing CPU load.
- Unlike **DNSSEC**, which demands infrastructure changes and cryptographic overhead, DCPsolver operates entirely within the recursive DNS resolver.
- DCPsolver can detect both off-path attacks (e.g., Kaminsky-style) and on-path attacks (Man-in-the-Middle).

Components of DCPsolver:

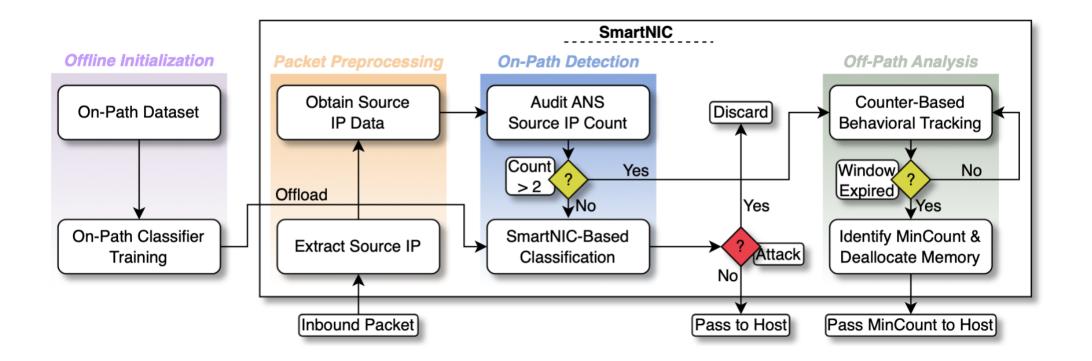
- Offline Initialization.
- Packet preprocessing.
- On-path attack detection.
- Off-path analysis.


6

Offline Initialization

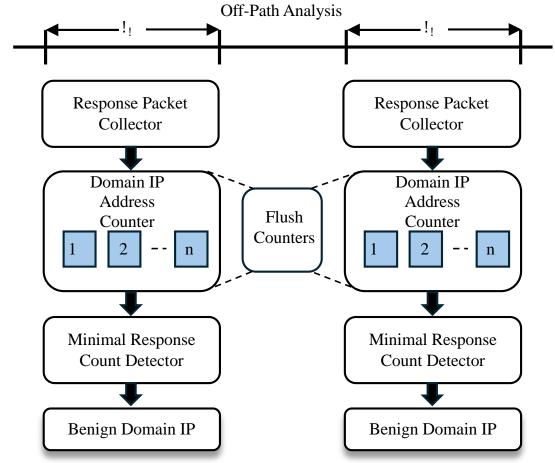
- Objective: DCPsolver uses a Gaussian Naïve Bayes (GaussianNB) classifier to detect on-path attacks by analysing network jitter and Round-Trip Time (RTT).
- Training Dataset: The classifier is trained offline using data containing both benign DNS responses and on-path attack traffic.
- Features for training:
 - Network jitter
 - RTT
- Training Process:
 - **GaussianNB** estimates the mean and variance for each feature (jitter, RTT).
 - The classifier is trained to detect deviations in these features, distinguishing between benign and attack traffic.

DCPsolver



DCPsolver

- SmartNIC Packet Inspection:
 - As DNS responses arrive, DCPsolver extracts key headers like source IP, transaction ID (TXID), TTL, and RTT.
 - Anomalies are detected in real-time within the SmartNIC, avoiding the need for the traffic to reach the DNS resolver's main CPU.
- On-path Traffic behaviour:
 - The system expects two responses: one from the attacker and one from the Authoritative Name Server(ANS).
 - If the packet count is ≤ 2 and the response is classified as benign, the packet is forwarded to the resolver.
 Otherwise, it is discarded.


DCPsolver

Off-path analysis

- Bucket-Based Counting Mechanism:
 - Incoming responses are grouped into predefined time windows (t_w).
 - The responses for each domain IP are counted during (*t_w*).
 - The source IP with the **minimal count** is classified as benign.

Dataset Generation of DCPsolver Evaluation

- Lack of pubic dataset:
 - No public datasets exist for DNS Cache Poisoning (DCP) on-path attacks, so we generated on-path DCP datasets to evaluate **DCPsolver**.
- Benign data generation:
 - Baseline: CAIDA's IPv4 Routed /24 DNS Names dataset established a baseline of benign DNS activity.
 - **Method:** The CAIDA dataset was replayed through an emulated DNS environment with a Bluefield-2 SmartNIC, providing realistic query and response timings for normal DNS behaviour.

Attack Data Generation

- Off-path Attack (Kaminsky Style):
 - A public Kaminsky-style attack tool simulated an off-path attack by flooding the DNS resolver with spoofed responses, attempting to guess the TXID and source port.
- On-path Attack (MITM):
 - A Man-in-the-Middle (MITM) attack tool simulated on-path attacks by intercepting DNS queries and injecting malicious responses before legitimate ones.
- Simulating Real-world Jitter and RTT:
 - To capture realistic network jitter and RTTs, we used Markov Chain Monte Carlo (MCMC) sampling.

Attack Data Generation

- Modelling Network Jitter:
 - Jitter was modelled using Laplacian distribution.

$$f(x|\mu,b) = \frac{1}{2b}exp(-\frac{|x-\mu|}{b})$$

- μ set to the mean jitter values from the CAIDA dataset to ensure that the generated jitter data reflects realworld behaviour.
- *b* Modelled as a **Half-Normal distribution** to account for variability and outliers typically observed in network jitter data.

Attack Data Generation

- Modelling RTTs:
 - RTTs were modelled using a Gaussian Process (GP) with an Exponentiated Quadratic (ExpQuad) covariance function.
 - The **length scale** of the ExpQuad was drawn from a **Gamma distribution**, capturing the smoothness and variability of real-world RTTs
- MCMC Sampling:
 - Markov Chain Monte Carlo (MCMC) sampling was used to generate the dataset, specifically employing the No-U-Turn Sampler (NUTS), a variant of Hamiltonian Monte Carlo (HMC), to explore the posterior distribution of jitter and RTT values efficiently.

Evaluation Setup

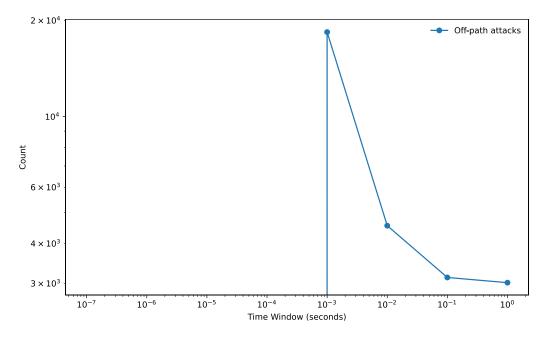
- Benign Traffic:
 - The CAIDA IPv4 Routed / 24 DNS Names dataset was replayed through the testbed using tcpreplay to simulate normal DNS traffic.
- Attack Traffic:
 - **On-path Attacks:** Man-in-the-Middle (MITM) attacks were simulated using a public attack tool.
 - **Off-path Attacks:** Kaminsky-style cache poisoning attacks were generated by flooding the resolver with spoofed responses, attempting to guess TXID and source port.

Metrics for Evaluation

- Accuracy:
 - **Precision:** Proportion of true positive attack detections among all flagged responses.
 - **Recall:** Proportion of true attacks detected out of all attack attempts.
- Resource Efficiency:
 - **CPU Utilization:** The system's CPU (SmartNICs) usage during DNS traffic handling and classification.
 - Off-path Attacks: Memory consumed by the SmartNIC for packet preprocessing and attack detection.

DCP Attack Detection Results

• Accuracy :


Class	Precision	Recall	F1-Score
0 (Benign)	0.92	0.98	0.95
1 (Malicious)	0.98	0.92	0.95
Accuracy			0.95

- The Gaussian Naïve Bayes classifier accurately flagged attack packets by analysing the jitter values, which followed a Laplace distribution.
- The bucket-based counting method successfully flagged off-path attacks by monitoring response counts per domain name.
- Detection accuracy reached **99%** by integrating **TTL** values as thresholds for flagging suspicious responses.

Time Window (*t_w***) Analysis**

- Detection Sensitivity based on t_w :
 - Small Jitter (microsecond range): Lower detection rate, as fewer responses are clustered.
 - Medium jitter (millisecond range): Optimal detectior clustering sufficient responses to identify spoofed traffic effectively.
 - Large jitter: Higher memory usage with minimal detection improvements, leading to inefficiency.

Resource Efficiency

CPU Utilisation Memory Utilisation 12000 0.45 11500 0.40 11000 (KB) CPU Time (s) -10500 N Memory 0000 9500 0.25 9000 0.20 8500 10-4 10-3 10-2 10^{-1} 100 10¹ 10-6 10-5 10-4 10-3 10-2 10^{-1} 100 10¹ 10-6 10-5 Time Window (s) Time Window (s)

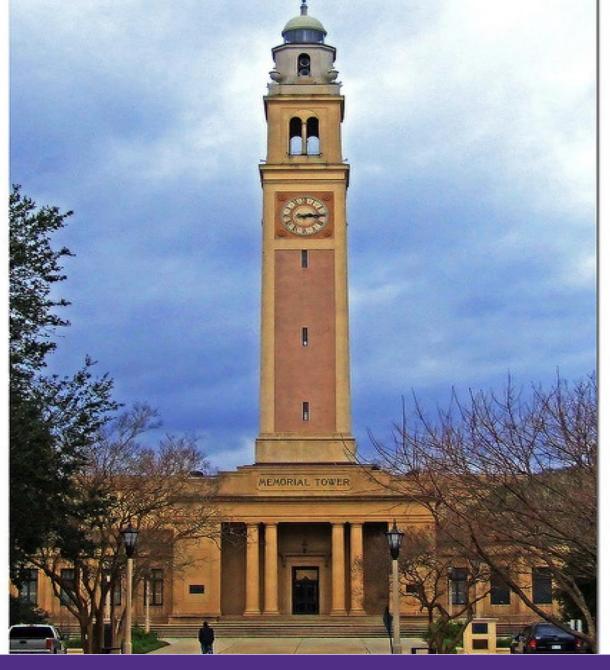
•The ideal t_w for balancing CPU/memory usage and detection accuracy was found to be 10^{-3} seconds.

10/26/2024

Conclusion

- DCPsolver provides a practical and scalable solution for DNS cache poisoning defenses both off and on-path, leveraging modern SmartNIC technology.
- Demonstrates **high accuracy** in real-time attack detection while maintaining efficiency.
- Future Work:
 - Plan to expand on capturing real-world traffic to enhance dataset accuracy and explore additional attack vectors.

College of Engineering School of Electrical Engineering & Computer Science


Thank you

Presenter

Bharath Kollanur bkolla1@lsu.edu

The 22nd International Symposium on Network Computing and Applications CUEB, Bertinoro(FC), Italy

