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Context

Federated Learning [1]

¹

¹https://en.wikipedia.org/wiki/Federated_learning

2 / 19

https://en.wikipedia.org/wiki/Federated_learning


Context

Gossip Learning [2]
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Context

Decentralized peer sampling [3]

PROOFS Algorithm (active thread)

initial peer list: cache
cache size: c
shuffle length: l
node address: p

1 loop
2 wait(Δ)
3 subset ← selectRandomSubset(cache, l)
4 q ← selectRandom(subset)
5 subset.remove(q)
6 subset.add(p)
7 send(q, subset)
8 subset𝑞 ← receive(q)
9 subset𝑞 .remove(p)

10 subset𝑞 .removeAll(cache)
11 cache ← subset𝑞
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Before and after a shuffling operation. Node 1 sends addresses {itself, 2,
3} to node 4. Node 4 sends back {5,6, 8}.
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Context

Random-graph Topology [4]
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Context

Power-law Topology [5]
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Elevator protocol

Hub-based topology & Hub sampling
• The objectif is to obtains an overlay network with h defined hubs, with h a parameter of the algorithm, and each hub

is connected to all the nodes in the networks. The application running on top will be able to take advantage of this
overlay to speed up message transmission in the network.

• Preferential Attachment: Drawing from the concept pioneered by Barabási and Albert [5], preferential attachment
dictates that new connections in the network are established preferentially with nodes possessing a higher number of
existing connections. This mechanism enables the organic emergence of hubs within the network, with selected nodes
naturally assuming central roles based on their connectivity without any explicit distinction other than their number
of incoming links.

• Random Attachment: Inspired by gossip-based peer sampling algorithms ([3], [6]), random attachment ensures that
nodes maintain connections with a representative and diverse subset of the network. This strategy promotes network
robustness by preventing excessive clustering and dependency on specific nodes (hubs). When existing hubs disappear
(e.g., due to failures or departure), other nodes within the network are opportunistically elevated to hub status,
ensuring continuity and adaptability of the network topology over time.
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Elevator protocol

Algorithm

Elevator Algorithm (active thread)

initial peer list: cache
cache size: c
desired number of hubs: h
initial backward list: backward_peers (empty)

1 loop
2 wait(Δ)
3 frequency_map ← {}
4 for peer in cache do
5 peer_cache ← send(CACHE_REQUEST, peer)
6 frequency_map ← frequency_map ∪ peer_cache
7 preferred ← frequency_map.sort().select(c)
8 preferred_backward ← {}
9 for peer in preferred do

10 peer_backward_peers ← send(BACKWARD_REQUEST, peer)
11 preferred_backward ← preferred_backward ∪ peer_backward_peers
12 cache ← {}
13 cache ← selectRandom(preferred, h) + selectRandom(peer_backward_peers, 𝑐 − ℎ)
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Elevator protocol

Simulation

• Simulations done with the Java PeerSim [7] simulator (modified),

with the cycle based mode

• Comparaisons against 3 peer sampling algorithms : Newscast, Proofs and Phenix (Power-law)

Value
Network size 1000

Number of cycles for each simulation 1000
Number of times each simulation was run (with different seed) 100

c parameter (cache size) 20
h parameter (number of hubs) 10

• All simulations were run on 16 vCPU, using 64G of memory.

• Code is available at https://gitlab.lip6.fr/legheraba/elevator
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Elevator protocol

Distribution of indegree
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Elevator protocol

Metrics
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Elevator protocol
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Elevator protocol

Contexts
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Elevator protocol
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Elevator protocol

Conclusion & next steps

Our algorithm allow the emergence of hubs and compared with PROOFS,
Newscast and Phenix, our algorithm has equivalent results in term of shortest
path length and diameter and is resilient against failures and attacks.

Next steps:

• Add machine learning & compare with other decentralized machine learning
approaches ([2], [8])

• Adapt the algorithm to real physical networks

• Implement more complex attacks
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Elevator protocol

Thanks

Any questions ?
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Appendix

Background thread

Elevator Algorithm (background thread)

1 loop
2 request, peer ← receive()
3 if request == CACHE_REQUEST then
4 send(cache, peer)
5 backward_peers.add(peer)
6 if request == BACKWARD_REQUEST then
7 send(backward_peers, peer)
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Appendix

Phenix algorithm

Phenix Algorithm (active thread)

peer)
cache size : c
initial peer list: cache
initial backward list: backward_peers (empty)
number of preferential connections: s

1 loop
2 wait(Δ)
3 𝐺random, 𝐺friend ← split(cache)
4 cache ← {}
5 cache.append(𝐺random)
6 𝐺candidates ← {}
7 for peer in 𝐺friend do
8 neighbor_list ← send(peer, CACHE_REQUEST)
9 𝐺candidates ← 𝐺candidates ∪ neighbor_list

10 sort(𝐺candidates)
11 𝐺preferred ← 𝐺candidates[0..(𝑠 − 1)]
12 for peer in 𝐺preferred do
13 send(peer, CONNEXION_REQUEST)
14 cache.append(𝐺preferred)
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