
ONLINE DIAGNOSIS OF MICROSERVICES

BASED APPLICATIONS VIA PARTIAL

DIGITAL TWIN

Sourav Das and Krishna Kant, Temple University

Presenter: Dr. Krishna Kant
The 22nd International Symposium on Network Computing and Applications

(NCA 2024)

Introduction to Microservices

➢ Small, single function modules
running in separate containers
▪ Intended to maximize parallelism and

independence

▪ Usually weak consistency,
asynchronous calls, no locking

▪ Broker for every resource

➢ Service Mesh (e.g., Istio)
▪ Automated instancing for scaling.

▪ Proxy based communication

▪ SDN-like architecture

Challenges in Microservices Fault
Diagnosis

➢ Complexity of Distributed Systems:

▪ Inter-service communication, data inconsistency.

➢ Complex Failure Scenarios:

▪ Network latencies, service unavailability, cascading
failures.

➢Observability Gaps:

▪ Difficulty in tracing across multiple services, inconsistent
logging, lack of end-to-end visibility.

Diagnosis Methods

➢ Traditional diagnosis methods for 𝜇S’s
▪ Centralized collection of service logs (e.g., using Graphana)

▪ Mostly offline analysis to find problems proactively

➢ Online diagnosis also essential
▪ Diagnose problem quickly based on observed/reported misbehavior

▪ Sequential diagnosis most appropriate

• Run a few tests ➔ Decide what to run next based on the results

➢ Diagnosing production systems challenging
▪ No unvetted changes ➔ Cannot run “what if” tests

▪ Specialized tests (read-only) may also be restricted

▪ Prob

Partial Digital Twin (PDT)

➢ Purpose: Provides reproducibility for testing in dynamic
environments.

➢ Key Features:
▪ Isolated microservice testing,

▪ Handles configuration and code changes,

▪ Uses Istio for managing microservice instances.

➢ Why not Full Digital Twin?
▪ Impractical due to resource demands.

▪ High synchronization traffic.

PDT (Continued)

➢Microservice Selection:

▪ Dynamic, incremental construction based on diagnosis
needs.

▪ Cache system for frequently tested microservices.

➢Query Transformation:

▪ Reduces data requirements while retaining accuracy
using aggregation.

Fault Tickets

➢ A ticket is created for the reported fault by support team.
▪ A single fault type (out of possible 8 types) and the service affected is

mentioned in the ticket.

Testing Procedure

➢ Subset Identification:
▪ Identify the microservices related to the fault.

▪ PDT Check: Verify if the identified microservices are already in the
PDT. If absent, replicate them in the PDT.

➢ Test Selection
▪ Use Zero Shot Learning (ZSL) to match faults with the most relevant

tests. Matching done statically

➢ Test Execution Order:
▪ Execute tests sequentially based on fault type. Stop when

misconfiguration is found.

➢ If no misconfiguration is found, expand subset of
microservices and repeat testing.

Assumptions

➢

Test Set (Total 26, named A-Z)

➢ nslookup <domain> : 1 iff successful DNS resolution takes <1s.

➢ B ping -c 4 <domain> : 1 iff ICMP latency to destination domain is
<100ms in 4 attempts.

➢ traceroute <domain> : 1 iff destination is reachable.

➢ .

➢ .

➢ .

➢ Z.

Categorization of Tests into Attributes

➢ A-E: Network bases tests which are mostly E2E.

➢ F-H: Security tests.

➢ I-Q: Infrastructure based tests in K8s and Istio configs.

➢ R-W: Database related tests.

➢ X-Z: Data corruption related tests.

Test Selection Infrastructure

Test Selection Probabilities

11/6/2024 Topic 7-2 -- Scheduling 13

Microservice Subset Identification

➢ Initialize cache with the faulty microservice

➢ Procedure
▪ Identify microservices not in cache (A) but called by those in

cache.

▪ Compute fault-score using

• historical error rate (HER),

• call frequency (HCF), and

• transaction call graph (TCG).

▪ Add highest-scoring microservices to the list.

▪ If cache is full, evict least recently used (LRU) microservices.

▪ Return list with selected microservices for replication in PDT.

Test Execution Process

➢ Test flow based on relevance scores;
▪ adjust based on test outcomes (e.g., for “US” or “Unreachable Service”

faults: {B, R-W, I-Q} is one of the paths).

Example
shopping

application

Normal Case (Mix of Reads & Writes)

Number of Tests Required

Mix of Read-heavy & Write-heavy Wkload

Mean #Tests Needed

Conclusions

➢ The mean number of steps taken is approximately 22%
above the ideal case for all fault types combined.

➢ The average median is about 7% above the ideal case.

	Diapositiva 1: Online Diagnosis of Microservices Based Applications Via Partial Digital Twin
	Diapositiva 2: Introduction to Microservices
	Diapositiva 3: Challenges in Microservices Fault Diagnosis
	Diapositiva 4: Diagnosis Methods
	Diapositiva 5: Partial Digital Twin (PDT)
	Diapositiva 6: PDT (Continued)
	Diapositiva 7: Fault Tickets
	Diapositiva 8: Testing Procedure
	Diapositiva 9: Assumptions
	Diapositiva 10: Test Set (Total 26, named A-Z)
	Diapositiva 11: Categorization of Tests into Attributes
	Diapositiva 12: Test Selection Infrastructure
	Diapositiva 13: Test Selection Probabilities
	Diapositiva 14: Microservice Subset Identification
	Diapositiva 15: Test Execution Process
	Diapositiva 16: Example shopping application
	Diapositiva 17: Normal Case (Mix of Reads & Writes)
	Diapositiva 18: Number of Tests Required
	Diapositiva 19: Mix of Read-heavy & Write-heavy Wkload
	Diapositiva 20: Mean #Tests Needed
	Diapositiva 21: Conclusions

