

ALMA MATER STUDIORUM Università di Bologna

Improving Intrusion Detection in IoT Networks

Silvio Russo, Isabella Marasco, Karina Chichifoi, Claudio Zanasi

Department of Computer Science and Engineering, University of Bologna, Italy

Introduction

- **Connectivity between devices** that share data increases the attack surface
- A Network Intrusion Detection Systems (NIDS) is the first component of a complex security system
- Modern NIDS adopt Machine Learning (ML) algorithms to automate the detection process to identify patterns in network traffic
- ML-based NIDS analyze large volumes of traffic, but generate too many false positives

Contributions

• Feature extraction and selection → provide the model with a high quality dataset

• **Bayes Point Machine** (BPM) a model for detection

• **11GB dataset** containing benign and malicious samples

Feature Extraction

Feature extraction permits to extract information from the data and removing irrelevant details and noise

We use two network analysis tools:

- Argus
- Zeek

The extracted features are merged into a CSV using the packet timestamp as the key

A total of **50 features** are **extracted**

Feature Selection

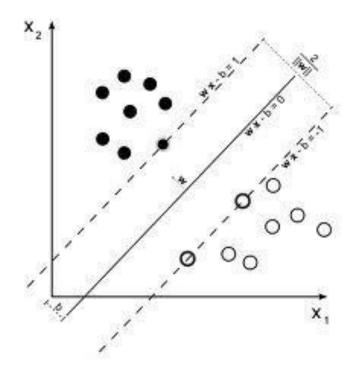
Feature selection chooses the most relevant features for classification

The **Mutual Information Classification** algorithm evaluates the mutual information between pairs of features using the entropy of the variables

- Apply Ward's linkage method for clustering
- Select the most influential feature per cluster

Advantages:

- Mitigate redundancy
- Ensures the preservation of pivotal variables
- Enhancing efficacy and reliability of classification

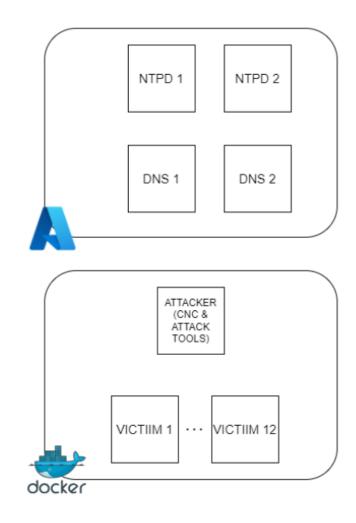


Bayes Point Machine

Bayes Point Machine is based on Bayesian

inference

- **Goal**: Approximate Bayesian posterior of a linear classifier
- Key feature: Averages multiple decision boundaries, called "Bayes points" derived from the posterior
- **Benefit**: Improves generalization by combining multiple hypotheses


Environment setup

To evaluate the proposed method, we set up an **environment** on **Azure**

The **testbed** was created **based on** the **UNSW-NB15 dataset** for reproducibility reasons

Advantages:

- **Control** over the **attacks** to be tested
- **Prevents** the generation of **new traffic** that could **affect** normal **traffic**

Dataset

Benign traffic:

- Record the traffic of 14 D-Link devices
- HD WiFi Camera
- Wireless N Network Camera
- mydlink Home Smart Plug
- mydlink Home-Connected Home Hub
- mydlink Home Door/Window Sensor

Attacks:

- Web Fuzzing Attack
- Brute-force Attacks
- SSL DoS Attacks
- Remote Code Execution
- Mirai

Experiments Results

To verify the validity of our methodology, we compare the results obtained from different models used as feature extractor:

- Our proposed solution
- Principal Component Analysis (PCA)

Classifier	Accuracy	ТР	TN	FP	FN
Bayesian	0.9999	1273000	1272984	0	16
Point					
Machine					
Logistic	0.9737	1215920	1264249	9251	57580
Regres-					
sion					
Random	0.9999	1273497	1273212	288	3
Forest					
Support	0.9962	1271669	1264746	8754	1831
Vector					
Machine					

Classifier	Accuracy	ТР	TN	FP	FN
Bayesian	0.9840	1260000	1265000	17000	17480
Point					
Machine					
Logistic	0.7164	72609	52985	3015	46732
Regres-					
sion					
Random	0.7214	77998	48486	7514	41343
Forest					
Support	0.7382	75830	53613	2387	43511
Vector					
Machine					

Conclusions and Future works

- This research underlines the potential to **focus** not only on machine learning methods, but also on **feature extractors**
- Our proposed methodology combines:
 - $\circ~$ Zeek and Argus for feature extraction
 - Bayes Point Machine for anomaly detection
- Future work: Include the online learning mode possible with Bayes Point Machine

Isabella Marasco

Department of Computer Science and Engineering University of Bologna, Italy

isabella.marasco4@unibo.it

www.unibo.it