

A Hybrid Approach to Traffic Offloading Optimization in Multi-UAV Cellular Networks

Zhiyong Liu

School of Computer Science and Engineering Sun Yat-sen University Guangzhou, China liuzhy88@mail2.sysu.edu.cn

Hong Shen

Faculty of Applied Sciences Macao Polytechnic University Macao, China hong.shen@adelaide.edu.au

Introduction

➢ **Background**

- UAV cellular network base station \rightarrow Extra bandwidth, emergency traffic, flexible deployment
- Traffic Offloading Techniques \rightarrow Relieving Congestion in UAV Cellular Networks.
- Lack of research on multi-drone traffic offloading to cellular networks

➢ *Preset conditions*

Nlos communication channel \rightarrow Corresponds with reality Grouping of users \rightarrow Ensure full utilization of drone transmission resources Ensure the distance between drones \rightarrow Avoid mutual interference Reducing drone movement distance \rightarrow Reduce power loss to improve service time

➢ **Contribution**

- Multiple UAVs collaborate to provide transmission services
- The total distance traveled by UAVs is a partial optimization objective to reduce power loss
- Modeling the traffic offload proportional distribution problem as an MDP
- Use mean-shift algorithm, minimum cost maximum flow algorithm and reinforcement learning approach to solve the problem together

Related Work

➢ **related work**

- Iman Valiulahi [1] and others use meanshift to maximize throughput for multi-UAV deployment
- Yong Zeng [2] used SCA for UAV communication energy minimization
- Shanza Shakoor [3] used k-means to maximize user access rate for UAV networks
- Xuanheng Li [6] Joint optimization of UAV trajectory, data acquisition, and transmission power based on DQN to maximize UAV transmission energy
- Muntadher A. Ali [7] et al. Optimized traffic allocation ratio, drone position and band allocation ratio by block coordinate optimization descent method to minimize average delay

➢ *Our research*

System Model

- All users are on some wifi LAN
- Multiple drones, each serving a group of users with additional bandwidth
- Drone height is determined
- m/m/1 queuing model

System Model

➢ **Relevant definitions**

 N_{UAV} :Unmanned Aerial Vehicles (UAVs) number. N_{CS} :Cellular Subscriber(CS) number q_i : CS_i postion. w_i

 w_i : UAV_i postion.

 D_{min} : Minimum distance between UAVs ($|w_i - w_j| \ge D_{\{\text{min}\}}$ ($\forall i, \forall j$))

 $a_{i,j}=1$: Indicate that CS_i is served by UAV_j

 μ_i : the ratio of \mathcal{CS}_i traffic offloading

 λ_i : the traffic demand of CS_i $\lambda^{AP}_i = \mu_i \lambda_i$: CS_i traffic demand transmittedvia WiFi Access Point(AP)

 $\lambda_{i}^{UAV} = (1 - \mu_i)\lambda_i$: CS_i traffic demand transmitted via UAV

 Θ_j : The total throughput of AP_j

 $R_i^{AP} = \frac{\Theta_j}{N_i^{AP}}$:the transmission rate of CS_i within its corresponding AP_i

 $R_i^{UAV} = \frac{\lambda_i^{UAV}BS_i}{\sum_{NS}^{N_{CS}} \lambda_{UAV}}$: the transmission rate of CS_i at the UAV

B:bandwidth of the UAV . $P:$ transmit power. $N_0:$ Gaussian noise power.

$$
\delta_i^{UAV} = \frac{1}{(R_i^{UAV} - \lambda_i^{UAV})^+} \text{ :the delays of } CS_i \text{ on UAV}
$$
\n
$$
\delta_i^{AP} = \frac{1 + 0.5 R_j^{AP} \lambda_i^{AP} v_i}{(R_j^{AP} - \lambda_i^{AP})^+} \text{ :the delays of } CS_i \text{ on AP.} \qquad \sum_i^{UAV} d_i \text{ :the distance traveled by all UAVs}
$$

$$
\min_{\mu_{i},a} \quad \delta^{max} + k \sum_{i}^{UAV} d_{i} \tag{1}
$$
\n
$$
\text{s.t.} \quad \lambda_{i}^{UAV} \le R_{i}^{UAV}, \forall i \in N_{CS} \tag{a}
$$
\n
$$
\lambda_{i}^{AP} \le R^{AP}, \forall i \in N_{c} \tag{b}
$$
\n
$$
|w_{i} - w_{j}| \ge D_{min}(\forall i, \forall j \in N_{UAV}) \tag{c}
$$
\n
$$
\sum_{j=1}^{N_{UAV}} a_{i,j} = 1, a_{i,j} \in \{0,1\} (\forall i \in N_{CS}) \tag{d}
$$

 \boldsymbol{w}

- ➢ *coefficient k: importance of the distances moved by the UAVs.*
- ➢ *constrain a: the transmission rate of the CS on the UAV should be greater than the traffic demand transmitted by the UAV*
- ➢ *constrain b: the transmission rate of the CS on the AP should be greater than the traffic demand transmitted by the AP*
- ➢ *constrain c: the UAVs should be kept at a minimum distance from each other*
- ➢ *constrain d: the user allocation scheme should satisfy that each user is served by one UAV.*

Mean-shift: Solves the user grouping problem

Background Model

 $C_{cluster} \leftarrow \emptyset$ and minimum distance between UAV 2: while U is not empty do Sample a random point p from U , set center o 3: $M \leftarrow \varnothing$ 4: for all point x, where $\sqrt{||x-o||_2} \le \frac{d_{min}}{2}$ do 5: $M \leftarrow M \cup \{x\}$ 6: end for $7[°]$ Initial mean-shift vector $\vec{a} \leftarrow 0$ g. for all point $x \in M$ do $9:$ $\vec{a} = \vec{a} + (\vec{x} - \vec{o})$ 10: end for 11: while $||\vec{a}|| \geq 0$ do $12:$ $o = o + \vec{a}$ $13:$ update \vec{a} and M $14:$ end while 15: if $||o - o'||_2 \le t$, $\forall C \in C_{cluster}, o'$ is center of 16: threshold then merge $\{C\}$ and $\{M\}$ $17:$ else 18: add $\{M\}$ to $C_{cluster}$ $19:$ end if $20:$ 21: end while 22: output $C_{cluster}$

1: Initial uncategorized user collection U , cluster ∞ > Advantages of mean-shift over k-means: ensure that each group of users is centered a certain distance away from each other

- The meanshift algorithm treats points with distances less than a certain value as being of the same class.
- The meanshift searches for the largest set of points that have a distance less than a constant value from each other.
- The points in the current point set are classified into one category, and the points are removed from the unclassified points.
- The process of classification is repeated until all points are categorized into a particular class.
- ➢ **After mean-shift end, we assign drones to these m classes**

UAV Navigation Minimization

Statutes for Minimum Cost Flow Problems

 N_{HAV} drones :the nodes in the first column *m* cluster centers (destination): the nodes in the second column.

Algorithm

edge between UAV and destination :

- capacity $= 1$.
- cost = the distance between UAV and destination.

other egde:

Background Model

- capacity $= 1$.
- $cost = 1$

Bellman-ford algorithm can solve the equivalence problem.

DRL method

--solve the problem of proportionate distribution of user traffic allocation

➢ **Why DRL?**

non-line-of-sight channel(nlos)

- \rightarrow The communication rate is no longer inversely proportional to distance squared.
- \rightarrow Traditional convex optimization methods is invalid

➢ *MDP model*

Experiment result

➢ **mean-shift result:**

➢ *bellman-ford result:*

➢ *DRL result:*

Summary

- Traffic offloading with multiple drones as base stations
- Reduce total drone distance to reduce drone power consumption
- Optimize maximum delay to enhance fairness
- Adopting a more realistic nLos channel model
- Slove using the meanshift algorithm, the statute as a minimum cost maximum flow problem, and the DRL approach

Thanks for Listening!