

A Hybrid Approach to Traffic Offloading Optimization in Multi-UAV Cellular Networks

Zhiyong Liu

School of Computer Science and Engineering Sun Yat-sen University Guangzhou, China liuzhy88@mail2.sysu.edu.cn

Hong Shen

Faculty of Applied Sciences Macao Polytechnic University Macao, China hong.shen@adelaide.edu.au

Introduction

Background

- UAV cellular network base station → Extra bandwidth, emergency traffic, flexible deployment
- Traffic Offloading Techniques \rightarrow Relieving Congestion in UAV Cellular Networks.
- Lack of research on multi-drone traffic offloading to cellular networks

Preset conditions

Nlos communication channel \rightarrow Corresponds with reality Grouping of users \rightarrow Ensure full utilization of drone transmission resources Ensure the distance between drones \rightarrow Avoid mutual interference Reducing drone movement distance \rightarrow Reduce power loss to improve service time

Contribution

- Multiple UAVs collaborate to provide transmission services
- The total distance traveled by UAVs is a partial optimization objective to reduce power loss
- Modeling the traffic offload proportional distribution problem as an MDP
- Use mean-shift algorithm, minimum cost maximum flow algorithm and reinforcement learning approach to solve the problem together

Related Work

related work

- Iman Valiulahi [1] and others use meanshift to maximize throughput for multi-UAV deployment
- Yong Zeng [2] used SCA for UAV communication energy minimization
- Shanza Shakoor [3] used k-means to maximize user access rate for UAV networks
- Xuanheng Li [6] Joint optimization of UAV trajectory, data acquisition, and transmission power based on DQN to maximize UAV transmission energy
- Muntadher A. Ali [7] et al. Optimized traffic allocation ratio, drone position and band allocation ratio by block coordinate optimization descent method to minimize average delay

Our research

Related Works	Our Research	Advantage
Throughput Maximization, Energy Minimization, Access Rate Maximization	Latency Minimization	Newer research area
Average latency minimization	Maximum latency minimization	Fairness
Single drone + los channel	Multi-drone + nlos channel	Realistic

System Model

- All users are on some wifi LAN
- Multiple drones, each serving a group of users with additional bandwidth
- Drone height is determined
- m/m/1 queuing model

System Model

Relevant definitions

 N_{UAV} :Unmanned Aerial Vehicles (UAVs) number. $q_i:CS_i$ postion. N_{CS} :Cellular Subscriber(CS) number w_i : UAV_i postion.

 D_{\min} : Minimum distance between UAVs ($|w_i - w_j| \ge D_{\{\min\}} (\forall i, \forall j)$)

 $a_{i,j} = 1$: Indicate that CS_i is served by UAV_j

 μ_i : the ratio of CS_i traffic offloading

 $\lambda_i^{AP} = \mu_i \lambda_i : CS_i$ traffic demand transmitted Via WiFi Access Point(AP)

 $\lambda_i^{UAV} = (1 - \mu_i)\lambda_i : CS_i$ traffic demand transmitted via UAV

 Θ_j : The total throughput of AP_j

 λ_i : the traffic demand of CS_i

 $R_i^{AP} = \frac{\Theta_j}{N_j^{AP}}$: the transmission rate of CS_i within its corresponding AP_j

 $R_i^{UAV} = \frac{\lambda_i^{UAV}BS_i}{\sum_{i=1}^{N_{CS}}\lambda_i^{UAV}}$: the transmission rate of CS_i at the UAV

B:bandwidth of the UAV . *P*: transmit power.

 N_0 :Gaussian noise power.

$$\delta_{i}^{UAV} = \frac{1}{(R_{i}^{UAV} - \lambda_{i}^{UAV})^{+}} : \text{the delays of } CS_{i} \text{ on UAV}$$

$$\delta_{i}^{AP} = \frac{1 + 0.5R_{j}^{AP}\lambda_{i}^{AP}v_{i}}{(R_{j}^{AP} - \lambda_{i}^{AP})^{+}} : \text{the delays of } CS_{i} \text{ on AP.} \qquad \sum_{i}^{UAV} d_{i} : \text{the distance traveled by all UAVs}$$

$$\lambda_i^{AP} \le R^{AP}, \forall i \in N_c \tag{b}$$

$$|w_i - w_j| \ge D_{min}(\forall i, \forall j \in N_{UAV})$$
 (c)

$$\sum_{j=1}^{N_{UAV}} a_{i,j} = 1, a_{i,j} \in \{0,1\} (\forall i \in N_{CS}) \quad (d)$$

- coefficient k: importance of the distances moved by the UAVs.
- constrain a: the transmission rate of the CS on the UAV should be greater than the traffic demand transmitted by the UAV
- constrain b: the transmission rate of the CS on the AP should be greater than the traffic demand transmitted by the AP
- > constrain c: the UAVs should be kept at a minimum distance from each other
- constrain d: the user allocation scheme should satisfy that each user is served by one UAV.

Mean-shift: Solves the user grouping problem

Background

Model

&Formulation

- Initial uncategorized user collection U, cluster co C_{cluster} ← Ø and minimum distance between UAV
 while U is not empty do
- 3: Sample a random point p from U, set center o
- 4: $M \leftarrow \emptyset$
- 5: for all point x, where $\sqrt{||x-o||_2} \le \frac{d_{\min}}{2}$ do 6: $M \leftarrow M \cup \{x\}$
- 7: end for
- 8: Initial mean-shift vector $\vec{a} \leftarrow 0$
- 9: **for all** point $x \in M$ **do**
- 10: $\vec{a} = \vec{a} + (\vec{x} \vec{o})$
- 11: end for
- 12: while $||\vec{a}|| \ge 0$ do
- $13: \qquad o = o + \vec{a}$
- 14: update \vec{a} and M
- 15: end while
- 16: **if** $||o o'||_2 \le t, \forall C \in C_{cluster}, o'$ is center of threshold **then**
- 17: merge $\{C\}$ and $\{M\}$
- 18: else
- 19: add $\{M\}$ to $C_{cluster}$
- 20: end if
- 21: end while
- 22: output C_{cluster}

Advantages of mean-shift over k-means: ensure that each group of users is centered a certain distance away from each other

- The meanshift algorithm treats points with distances less than a certain value as being of the same class.
- The meanshift searches for the largest set of points that have a distance less than a constant value from each other.
- The points in the current point set are classified into one category, and the points are removed from the unclassified points.
- The process of classification is repeated until all points are categorized into a particular class.
- After mean-shift end, we assign drones to these m classes

UAV Navigation Minimization

Statutes for Minimum Cost Flow Problems

Background

 N_{UAV} drones : the nodes in the first column *m* cluster centers (destination): the nodes in the second column.

Algorithm

edge between UAV and destination :

capacity = 1.

Model

&Formulation

cost = the distance between UAV and destination.

other egde:

- capacity = 1.
- cost = 1

The original problem	equivalence problem
Assigning N_{UAV} drones to m cluster centers and minimizing the total distance	Finding in the constructed graph a capacity of ${m m}$ minimum cost flow.

Bellman-ford algorithm can solve the equivalence problem.

DRL method

--solve the problem of proportionate distribution of user traffic allocation

> Why DRL?

non-line-of-sight channel(nlos)

- \rightarrow The communication rate is no longer inversely proportional to distance squared.
- \rightarrow Traditional convex optimization methods is invalid

MDP model

DRL argorithm	Specificities
DQN	Discrete action space, not applicable
NPG,TRPO	KL dispersion is complex to compute and slow to converge
РРО	The clip method restricts the update step size and has fast and stable convergence

Experiment result

mean-shift result:

> bellman-ford result:

initial position	target position
(-600,600)	Stays stationary
(-100,300)	(-293.72,299.73)
(-300,100)	(-14.75,-203.56)
(300,100)	(232.65,353.24)

> DRL result:

Summary

• Traffic offloading with multiple drones as base stations

Background

- Reduce total drone distance to reduce drone power consumption
- Optimize maximum delay to enhance fairness
- Adopting a more realistic nLos channel model
- Slove using the meanshift algorithm, the statute as a minimum cost maximum flow problem, and the DRL approach

Thanks for Listening!