
Efficient Write
Operations in Event
Sourcing with
Replication

1

Nuno Preguiça**
nmp@fct.unl.pt

Filipe Araujo*
filipius@uc.pt

Bertinoro, Italy, 24-10-2024

Tiago Rolo*
tiago.rolo@uc.pt

* University of Coimbra, CISUC, DEI
** Nova University of Lisbon, LINCS, FCT

Outline

1. Introduction & Background

2. Server Replication

3. Experiments and Results

4. Conclusion & Future Work

2

Introduction &
Background

3

401. Introduction & Background

Event Sourcing

● Architectural Pattern
● Events represent past actions
● Stores all past actions as events
● Immutable sequence as a single source of truth
● Particularly efficient in event-driven architectures
● One Event Log leads to single point of failure

501. Introduction & Background

DDD, CQRS, Saga

● Domain-Driven Design:
○ Software development approach that emphasizes collaboration between

domain experts and developers
○ Aggregate, domain events, commands

601. Introduction & Background

DDD, CQRS, Saga

● Domain-Driven Design:
○ Software development approach that emphasizes collaboration between

domain experts and developers
○ Aggregate, domain events, commands

● CQRS:
○ Split write and read concerns into two models
○ Each model can be its own database

701. Introduction & Background

DDD, CQRS, Saga

● Domain-Driven Design:
○ Software development approach that emphasizes collaboration between

domain experts and developers
○ Aggregate, domain events, commands

● CQRS:
○ Split write and read concerns into two models
○ Each model can be its own database

● Saga Pattern:
○ Orchestrates actions across services and aggregates
○ Guaranteed to complete execution
○ If failure occurs, use compensation action

801. Introduction & Background

Event Sourcing with Replication

● Master/Slave Replication Type
● Axon Framework + MongoDB
● The clients farther away from the master node will not benefit from efficient

writes
● Independent and Efficient write operations are not exploited

901. Introduction & Background

Problem Statement

● Independent write operations in Event Sourcing

1001. Introduction & Background

Problem Statement

● Independent write operations in Event Sourcing
● Order of events across replicas:

○ A replicated log might get inconsistent due to latency

1101. Introduction & Background

Problem Statement

● Independent write operations in Event Sourcing
● Order of events across replicas:

○ A replicated log might get inconsistent due to latency
● Application Resource Exhaustion:

○ Replicas might consume the same last resource

1201. Introduction & Background

Problem Statement

● Independent write operations in Event Sourcing
● Order of events across replicas:

○ A replicated log might get inconsistent due to latency
● Application Resource Exhaustion:

○ Replicas might consume the same last resource
● Stored Logical Clock:

○ Axon uses logical clocks to order events
○ Might overlap with an already existing event

1301. Introduction & Background

Related Works

● Limón et al [1]:
○ Built a framework that utilizes the Saga pattern with a multi-agent

system, to coordinate distributed transactions between multiple
microservice

● O’Neil [2]:
○ Escrow mechanism that increases the amount of transactions that could

be executed simultaneously
● Balegas et al [3]:

○ Escrow transactional method using invariant numbers as an escrow to
enforce eventual consistency in a geo-replicated system

● Leite [4]:
○ Data replication using the Axon Framework on top of MongoDB Replica

Sets

Server
Replication

1502. Server Replication

Proposed Approach

● We aim to replicate the event log independently, improving dependability
● Partition the resources across the two nodes with a transferring rights

mechanism
● Additional Database as a callback
● Callback orders the events using Logical Clocks
● Sagas orchestrate transactions

1602. Server Replication

Technologies

1702. Server Replication

Architecture

Experiments &
Results

1903. Experiments & Results

Experimental Setup

● Built a generic Port Management application
● Deployed in two AWS regions: us-east-2 and eu-west-3
● Each region represents a replica
● Deployed a similar setup for MongoDB Replica Set as a baseline
● To automate the tests with a custom tool
● Each test ran through 300 requests

2003. Experiments & Results

Measurements

● Local Consistency:
○ Time between the event being written to the Event Store and H2

Database
● Replication Time:

○ Time between the event being request locally and written to the remote
Event Store

● Remote Consistency:
○ Time between the event being requested locally and show up in the

peer’s H2 Database

2103. Experiments & Results

Experimental Results

2203. Experiments & Results

Experimental Results

2303. Experiments & Results

Experimental Results

2403. Experiments & Results

Experimental Results

2503. Experiments & Results

Experimental Results

2603. Experiments & Results

Experimental Results

2703. Experiments & Results

Experimental Results

2803. Experiments & Results

Experimental Results

If the number of cases the “happy path” occurs is
86.93% or better our “local consistency times” improve

those of the Replica Set

Conclusion &
Future Work

3004. Conclusion & Future Work

Conclusion & Future Work

● The local operations were in favour of the implemented mechanism
● The Replica Set approach is better than the worst case
● The method loses to the Replica Set in replication
● Consistency times are closer

3104. Conclusion & Future Work

Conclusion & Future Work

● The local operations were in favour of the implemented mechanism
● The Replica Set approach is better than the worst case
● The method loses to the Replica Set in replication
● Consistency times are closer
● Improve the replication performance using an event-driven approach
● Taking out the additional steps required to ensure consistency will increase

performance

3204. Conclusion & Future Work

References

● [1] Xavier Limón, Alejandro Guerra-Hernández, Angel J Sánchez-García,
and Juan Carlos Peréz Arriaga. SagaMAS: a software framework for
distributed transactions in the microservice architecture. In 2018 6th
International Conference in Software Engineering Research and Innovation
(CONISOFT), pages 50–58. IEEE, 2018.

● [2] Patrick E O’Neil. The escrow transactional method. ACM Transactions on
Database Systems (TODS), 11(4):405–430, 1986.

● [3] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc
Shapiro, Rodrigo Rodrigues, and Nuno Preguiça. Extending eventually
consistent cloud databases for enforcing numeric invariants. In 2015 IEEE
34th Symposium on Reliable Distributed Systems (SRDS), pages 31–36.
IEEE, 2015.

● [4] Gustavo Miguel Martins Leite. Creation of a Replicated Event Sourcing
Application. Master’s thesis, University of Coimbra, Coimbra, Portugal,
2023.

