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401. Introduction & Background

Event Sourcing

● Architectural Pattern 
● Events represent past actions
● Stores all past actions as events
● Immutable sequence as a single source of truth
● Particularly efficient in event-driven architectures 
● One Event Log leads to single point of failure



501. Introduction & Background

DDD, CQRS, Saga

● Domain-Driven Design:
○ Software development approach that emphasizes collaboration between 

domain experts and developers
○ Aggregate, domain events, commands



601. Introduction & Background

DDD, CQRS, Saga

● Domain-Driven Design:
○ Software development approach that emphasizes collaboration between 

domain experts and developers
○ Aggregate, domain events, commands

● CQRS:
○ Split write and read concerns into two models
○ Each model can be its own database



701. Introduction & Background

DDD, CQRS, Saga

● Domain-Driven Design:
○ Software development approach that emphasizes collaboration between 

domain experts and developers
○ Aggregate, domain events, commands

● CQRS:
○ Split write and read concerns into two models
○ Each model can be its own database

● Saga Pattern:
○ Orchestrates actions across services and aggregates
○ Guaranteed to complete execution
○ If failure occurs, use compensation action
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Event Sourcing with Replication

● Master/Slave Replication Type
● Axon Framework + MongoDB
● The clients farther away from the master node will not benefit from efficient 

writes
● Independent and Efficient write operations are not exploited
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Problem Statement

● Independent write operations in Event Sourcing
● Order of events across replicas:

○ A replicated log might get inconsistent due to latency 
● Application Resource Exhaustion:

○ Replicas might consume the same last resource
● Stored Logical Clock:

○ Axon uses logical clocks to order events
○ Might overlap with an already existing event
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Related Works

● Limón et al [1]:
○ Built a framework that utilizes the Saga pattern with a multi-agent 

system, to coordinate distributed transactions between multiple 
microservice

● O’Neil [2]:
○ Escrow mechanism that increases the amount of transactions that could 

be executed simultaneously
● Balegas et al [3]: 

○ Escrow transactional method using invariant numbers as an escrow to 
enforce eventual consistency in a geo-replicated system

● Leite [4]:
○ Data replication using the Axon Framework on top of MongoDB Replica 

Sets  
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1502. Server Replication

Proposed Approach

● We aim to replicate the event log independently, improving dependability
● Partition the resources across the two nodes with a transferring rights 

mechanism
● Additional Database as a callback
● Callback orders the events using Logical Clocks
● Sagas orchestrate transactions
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Architecture
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1903. Experiments & Results

Experimental Setup

● Built a generic Port Management application
● Deployed in two AWS regions: us-east-2 and eu-west-3
● Each region represents a replica
● Deployed a similar setup for MongoDB Replica Set as a baseline
● To automate the tests with a custom tool
● Each test ran through 300 requests
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Measurements

● Local Consistency: 
○ Time between the event being written to the Event Store and H2 

Database
● Replication Time:

○ Time between the event being request locally and written to the remote 
Event Store

● Remote Consistency:
○ Time between the event being requested locally and show up in the 

peer’s H2 Database
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Experimental Results

If the number of cases the “happy path” occurs is 
86.93% or better our “local consistency times” improve 

those of the Replica Set
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Conclusion & Future Work

● The local operations were in favour of the implemented mechanism
● The Replica Set approach is better than the worst case
● The method loses to the Replica Set in replication
● Consistency times are closer 
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Conclusion & Future Work

● The local operations were in favour of the implemented mechanism
● The Replica Set approach is better than the worst case
● The method loses to the Replica Set in replication
● Consistency times are closer 
● Improve the replication performance using an event-driven approach
● Taking out the additional steps required to ensure consistency will increase 

performance
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