
AUPE:
Collaborative Byzantine fault-tolerant 
peer-sampling

NCA’24

Augusta Mukam, Joachim Bruneau-Queyreix, Laurent Réveillère 



● No central tracking for peer discovery

Node 1
Node 2

…
Node N

Nodes

2

Large scale distributed systems



Large scale distributed systems

● No central tracking for peer discovery

● Gossip-based peer sampling

○ Aim: Maintain knowledge of active 

nodes

○ For selecting and providing 

random & uniform samples of 

identifiers (IDs)
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Gossip-based peer sampling service

● Each node has a local View
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Gossip-based peer sampling service

● Each node has a local View

● Periodically:

○ Exchange Push and Pull requests

○ Update view
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Gossip-based peer sampling service

● Each node has a local View

● Periodically:

○ Exchange Push and Pull requests

○ Update view

● Global network connectivity
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● Group of malicious/Byzantine nodes

● Promote nodes within their member group
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● Group of malicious/Byzantine nodes

● Promote nodes within their member group

● Increase their representation in honest nodes 

views
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● Group of malicious/Byzantine nodes

● Promote nodes within their member group

● Increase their representation in honest nodes 

views
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Eg: Bitcoin Eclipse attack

● Corrupted version of blockchain

● Manipulate their tokens

Poisonin
g

Eviction
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Problem

● Group of malicious/Byzantine nodes

● Promote nodes within their member group

● Increase their representation in honest nodes 

views 
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● Target higher-level 
protocols

● Network Attacks



● Identify malicious nodes based on misbehavior proofs

● Punish faulty nodes

● Lead to major disruption
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Fault-detection



● Tolerate malicious nodes

● Prevent them from polluting the system

Fault-tolerance
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Fault-tolerance
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● Tolerate malicious nodes

● Prevent them from polluting the system

● Brahms, extension Basalt



Fault-tolerance
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Brahms

f=26% malicious nodes

77% malicious IDs in honest node views

● Tolerate malicious nodes

● Prevent them from polluting the system

● Brahms, extension Basalt



Fault-tolerance
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Brahms

f=26% malicious nodes

77% malicious IDs in honest node views

Basalt

Better than Brahms for f< 20%

Results get worse rapidly

● Tolerate malicious nodes

● Prevent them from polluting the system

● Brahms, extension Basalt



Gossip component

● Handle push/pull requests

● View update 
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BRAHMS overview

Sampling component

● Uniform sample of seen nodes

Gossip component

● Share knowledge

● View update 
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➔ Received streams of identifiers are source of bias

➔ Mitigate Byzantine over representation

Motivation
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AUPE Protocol

● Based on BRAHMS components

● AUPE Set Cleaner

○ Produces less biased streams

19

Sample list

Brahms 
sampling

Pushed IDs

Pulled IDs

history sample

Dynamic View

AUPE Set Cleaner

Push Part Pull Part Sample Part



AUPE Protocol

● Based on BRAHMS components

● AUPE Set Cleaner

○ Produces less biased streams

● AUPE Secret Collaborative 

debiasing

○ Enhance the local debiasing 

mechanism

20

Sample list

Brahms 
sampling

Pushed IDs

Pulled IDs

history sample

Dynamic View

AUPE Set Cleaner

Push Part Pull Part Sample Part



Tracking component

● Record occurrences of received IDs in a tracking data-structure
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AUPE Set Cleaner



Tracking component

● Record occurrences of received IDs in a tracking data-structure
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AUPE Set Cleaner

Key-value store

● Give real occurrences

● Same size as the system

Count-min-sketches

● Probabilistic data-structure

● Give estimate occurrences

● Fixed-size 

Tracking data-structure



Tracking component

● Record occurrences of received IDs in a tracking data-structure
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AUPE Set Cleaner

Occurrence of node i (real or estimated): 
Occi

Insert

Request

Tracking component

Occi

IDi

ID stream

…

…



AUPE Set Cleaner

Debiasing component

● Transforms received stream to a more uniform one

● Probability of inserting into sample memory

24

Probability of insertion of ID i : Pi
Minimum of all occurrences : min



AUPE Set Cleaner

Debiasing component

● Transforms received stream to a more uniform one

● Probability of inserting into sample memory

● Sample memory IDs form the output stream
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Probability of insertion of ID i : Pi
Minimum of all occurrences : min



● Choose infrequent IDs more often

● Improve correct node tolerance to malicious over-representation

AUPE Set Cleaner       review
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● Choose infrequent IDs more often

● Improve correct node tolerance to malicious over-representation

AUPE Set Cleaner       review
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Increase of Brahms tolerance by up to 60% 

Tracking 
component

Debiasing 
component

Sampling 
memoryID stream Cleaned set



AUPE Secret Collaborative Debiasing

● System is equipped with Trusted nodes

○ Based on TEE technology: authenticity of the code

○ Secure mutual authentication to recognize trusted peers
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AUPE Secret Collaborative Debiasing

● System is equipped with Trusted nodes

○ Based on TEE technology: authenticity of the code

○ Secure mutual authentication to recognize trusted peers

● Exchange and merge their tracking components 

● Enhance the debiasing mechanism of the Set Cleaner

29



● Merge        : Aggregate two tracking components

○ Average computation of each corresponding entries

Combined knowledge of streams 1 and 2
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● Merge        : Aggregate two tracking components

○ Average computation of each corresponding entries

● Trusted peer list 

○ M last known trusted peer IDs to recontact
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AUPE Secret Collaborative Debiasing

+



Evaluation questions

● To what extent does Aupe-simple (without Merge) improve the tolerance ?

● What is the impact of the secret collaborative debiasing ?

● Compare to Brahms, Basalt

32



Experimental evaluation

Metric

● Resilience: proportion of Byzantine IDs in honest node views at last round

● Optimal Case: system resilience is equal to system proportion of Byzantine nodes
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Experimental evaluation

Parameters

● System size N=10,000

● Fraction f of faulty nodes

● Fraction t of trusted nodes

● Tracking component : Key-value store
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System Tolerance improvement
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System Tolerance improvement
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f=26%

f=26%

➔ 40% on Brahms 

➔ 52% on Basalt

Aupe-simple 



View parts tolerance improvement

View’ Pull part 

68% of 
Improvement
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Push Part Pull Part Sample Part

AUPE Set Cleaner

Pulled IDs

f=26%

Aupe-simple 



Collaborative debiasing

Aupe with t=10%, 20% and 30%

● Good impact of collaborative debiasing
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Conclusion

● AUPE
○ The first peer sampling that utilizes Collaborative trusted debiasing to achieve Byzantine-

tolerance

● Near-perfect resilience
○ Even with adversary controlling 26% of nodes
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Conclusion

● AUPE
○ The first peer sampling that utilizes Collaborative trusted debiasing to achieve Byzantine-

tolerance

● Near-perfect resilience
○ Even with adversary controlling 26% of nodes

● Study trusted node re-identification attack
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