Hooks: A Simple and Modular Checkpointing Protocol for Blockchains

Pedro Antonino, Antoine Durand, Namrata Jain, Garry Lancaster, Jonathan Lawrence, A. W. Roscoe

The Blockhouse Technology Ltd., Oxford, UK

October 24, 2024

he construction

Conclusion

- 2 Formalizing a suitable model
- 3 Provided Properties
 - The construction

2/22

he construction

Conclusion

Table of contents

- Formalizing a suitable model
- 3 Provided Properties
- 4) The construction
- 5 Conclusion

The construction

Conclusion

Finality issues in blockchain

Many issues recognized in the literature:

- Non-instant finality.
- Long-range attacks.
- Posterior corruptions.
- Trusted bootstrap.

he construction

Finality issues in blockchain

- All related and solvable, but requires careful considerations !
- Our proposed solution: A checkpointing layer.
 - \rightarrow Simple and modular.

5/22

he construction

Conclusion

Table of contents

Context

- 2 Formalizing a suitable model
- 3 Provided Properties
- 4) The construction
- 5 Conclusion

6/22

he construction

Conclusion

The blockchain model

The standard State Machine Replication-style definition:

Transaction Ledger (informal)

Nodes propose transactions and they output the final ones.

- Safety : the final transactions are the same for all honest nodes.
- Liveness : proposed transactions eventually becomes final.

he construction

Conclusion

The checkpoint layer properties

- Takes an underlying blockchain B.
- *B* may have weak Safety properties.
- The checkpoint layer:
 - same structure as a blockchain.
 - provides stronger Safety properties.

8/22

he construction

What is a "weak" blockchain?

- What is a weak transaction ledger?
 - *E.g.*, for Bitcoin, the (probabilistic) security bound depends on the network delay.
 - For Proof-of-Stake protocols, past participants may cause Safety issues.
 - More generally, Safety could be broken in unexpected situations.

The construction

What is a "weak" blockchain?

We sidestep the problem and define the weakest Safety property that works.

TLBS - Time-Limited Block Safety (informal)

TLBS(h) holds iff, honest nodes agrees on the *L* blocks from height *h* to height h + L, from the time that the first block is known until the last block is known by all.

Our assumptions

With input blockchain \mathcal{B} :

- TLBS only for Liveness.
- Sybil-resistance through L-Chain Quality.
 - Within *L* consecutive blocks, there is less than a third of malicious block authors.
- B's Liveness.
- The Secure Deletion assumption.
 - Honest nodes can irrevocably delete their state.
- The execution model taken from \mathcal{B} .

he construction

Conclusion

Table of contents

Context

- 2) Formalizing a suitable model
- 3 Provided Properties
 - 4) The construction
 - 5 Conclusion

Hooks as a checkpointing layer

Checkpoint Safety

Only a single checkpoint will ever be created for every block height.

Checkpoint Liveness

Hooks is live as long as TLBS holds.

Per-block overhead is O(1).

Safety Improvements

Our Safety property is stronger than the Transaction Ledger Safety.

- Mitigates long-range attacks, *e.g.*, in case of Posterior Corruptions.
- Online nodes are immune because they have time-related information.
 - Only joining nodes are concerned.
 - The checkpointing proofs are sufficient for nodes to join.
 - \rightarrow Free property : Trustless Bootstrap.

The construction

Conclusion

Table of contents

Context

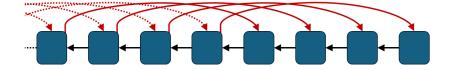
- 2) Formalizing a suitable model
- 3 Provided Properties
- 4 The construction
- 5 Conclusion

The birds eye

The algorithm, in short.

- Block b author include its public key in b.
- If b's L-th descendant becomes final, the author signs it.
 - This signature is called a *hook*.
- Submit the hook and delete the key
- A blocks is checkpointed if its L-depth subtree has ²/₃rd of blocks hooked.
 - \rightarrow The hooks set is a checkpoint proof !

The birds eye



The construction

Conclusion

The birds eye

16/22

The construction

Conclusion

The birds eye

The construction

The formal arguments

- When there is a fork at height *h*, there are *L* common block authors to vote on branches
- By quorum intersection, there is *at most* one branch checkpointed.
 - Any two sets of $\frac{2}{3}L$ hooks intersects at at least one *honest* node.
 - Honest nodes will never send two hooks.
- If *TLBS*(*h*) does not holds, it might be none !

The construction

Conclusion

Some additional details

- Ignore non-checkpointed branches.
- Wait until your own block is checkpointed before sending a hook.

A weaker alternative version

With $\frac{2}{3}$ honesty in Chain Quality, Hooks cannot be applied to honest majority blockchains.

- $\frac{1}{2}$ honesty also works, but we have weaker Safety.
- The algorithm must be modified to track *equivocating* hooks.
- Equivocating hooks may cause checkpoints to be (eventually) invalidated.

Weak Safety (informal)

If *TLBS* does not hold at some height, then there may be multiple checkpointed branches. In this case, eventually none of them will be checkpointed.

BLOCKHOUSE

Context

The construction

Some possible improvements

- Hooks can be aggregated into a single signature for short checkpoint proofs.
- Avoid storing the node public key with key-evolving signatures.
- Make the analysis in the Universal Composability framework.

In short, we take a weak blockchain, and,

- Prevent many safety issues when possible (*e.g.*, asynchrony, posterior corruption)
- Otherwise will only break Liveness.
- Offers trustless bootstrap/long-range attack resistance.
- Keep performance unaffected (experimentally confirmed).
- And possibly more (*e.g.* Quantum Resistance).

he construction

 $\underset{\circ \bullet}{\text{Conclusion}}$

Thank you for your attention

Antonino et al. (TBTL)

$$TLBS(h) := \text{Let } t_1 := \min\{t' \mid \exists i \in \mathcal{H}, \ \mathcal{F}_i^{t'}.h = h\}$$

$$\text{Let } t_2 := \min\{t' \mid \forall i \in \mathcal{H}, \ \mathcal{F}_i^{t'}.h = h + l\}$$

$$\forall h' \in [h, h + l],$$

$$\# \bigcup_{\substack{t \in [t_1, t_2] \\ i \in \mathcal{H}}} \{\mathcal{F}_i^t[h]\} \le 1$$

October 24, 2024 22/22

$$TLBS(h) := \text{Let } t_1 := \min\{t' \mid \exists i \in \mathcal{H}, \ \mathcal{F}_i^{t'}.h = h\}$$

$$\text{Let } t_2 := \min\{t' \mid \forall i \in \mathcal{H}, \ \mathcal{F}_i^{t'}.h = h + l\}$$

$$\forall h' \in [h, h + l],$$

$$\# \bigcup_{\substack{t \in [t_1, t_2] \\ i \in \mathcal{H}}} \{\mathcal{F}_i^t[h]\} \le 1$$

October 24, 2024