Byzantine Resilient Waves Interference-based Visual Encryption Scheme

Alexander Fok, Shlomi Dolev and Michael Segal

Ben-Gurion University of the Negev, Israel

VES Background

Original Image Shares – random Yellow and Blue pixels Recovered Image – grey pixels

Original Image

VES Pixel Encoding, Naor and Shamir Definition - Black = 1 White = 0

Share 1	Share 2	Stack 1 & 2 - OR
0	0	0
0	0	

VES Properties

- Advantages
 - Perfect information-theoretic security against honest and curious adversaries
 - Computational efficiency
- Limitations
 - Perfect Color Use Limitation
 - Byzantine Adversary Vulnerability

VES Perfect Color Use Limitation

Recovered Image – grey pixels

Original Image

VES Perfect Color Use Limitation

- visual effect of a black subpixel can not be undone
- monotonicity

Byzantine Adversary Vulnerability

- Byzantine adversary changes single white sub pixel of the share 1 to a black => pixel becomes black
- Monotonicity no way to detect or correct Byzantine adversary action

Our Solution

• Waves Interference-based Visual Encryption Scheme

Waves Interference Types

Constructive Interference

Destructive Interference

Definitions

- Represent VES shares as wave signals $S_i = (A_i, P_i)$
- Introduce phase and amplitude to control the waves interaction
- $A_i = 1$
- $P_i = \in \{P_1, P_2\}$
- A represents reconstructed pixel amplitude
- S represents reconstructed pixel wave signal

Reconstructed Pixel Amplitude A Calculation

- $A = \sum_{i=1}^{n} (A_i, P_i)$
- Examples
 - $S = \{P_1, P_2, P_1\} = 1, 0 \Rightarrow A = 1$
 - $S = \{P_2, P_2, P_1\} = 0, 1 \Rightarrow A = 1$

Two Shares Model

Black pixel

White pixel

Share 1	Share 2	Stack 1 & 2			
1	1	2 0 =2			
1	1	0 0 =0			
1	1	0 0 =0			
1	1	0 2 =2			

N Shares Model - Even N

k	C_k^n			S	Share Examples	Stack 1 & 2						
0	1	1	1	1	1		0	4		=4		
4								~				
2	6	1	1	1	1		2	2		=0		
0	А	1	4	4			~	4		-2		
4	1	1	1	1	1		4	0		=4		

N Shares Model - Odd N

Black pixel

White pixel

	k	C_k^n	Share Examples	Stack 1 & 2				
	0	1	1 1 1 1	<mark>0 5</mark> =5				
_	1	E		4 4 -2				
	·	<u> </u>						
	2	10	1 1 1 1 1	<mark>2</mark> 3 =1				
i i	3	10	1 1 1 1	<mark>3</mark> 2 =1				
	4	-						
		0						
	5	1	1 1 1 1 1	5 0 =5				

Implementation - Amplitude Threshold Filter

•
$$\hat{A} = \begin{cases} 0, if \ A < F \\ A, otherwise \end{cases}$$

Implementation

Security Model

- Security goal 1 adversary that controls less than d agents can not reveal any information about the secret image
- Security goal 2 less than b byzantine adversaries can not affect the original image reconstruction

Byzantine Adversaries Resiliency

- Single Byzantine adversary alters the signal amplitude ${\cal A}_i$
- Single Byzantine adversary alters the signal phase P_i

Byzantine Adversaries Resiliency

• Even N, N=6

k	Share Exam	oles	Original Sum	Flipped Share Sum	Filtered Sum
0	1 1 1 1 1 1	1	=6	=4	=4
1	<u>1 1 1 1 1</u>	1	=4	=6	=6
2	1 1 1 1 1 1	1	=2	=4	=4
3	1 1 1 1 1 1	1	=0	=2	=0
4	1 1 1 1 1 1	1	=2	=0	=0
5	<mark>1</mark> 11111	1	=4	=2	=2
6	1 1 1 1 1 1	1	=6	=4	=4

Swap

Byzantine Adversaries Resiliency

• Odd N , N=7

k				Sha	re Exa	ample	es	I	Original Sum	Flipped Share Sum	Filtered Sum
0	1	1	1	1	1	1	•	1	=7	=5	=5
1	1	1	1	1	1	1		1	=5	=7	=7
2	1	1	1	1	1	1		1	=3	=5	=5
3	1	1	1	1	1	1	•	1	=1	=3	=0
4	1	1	1	1	1	1	-	1	=1	=1	=0
5	1	1	1	1	1	1		1	=3	=1	=0
6	1	1	1	1	1	1			=5	=3	=3
7	1	1	1	1	1	1	1	1	=7	=5	=5

Swap

Security Model Results

- Honest-but-curious adversaries $d \leq \left|\frac{n}{2}\right| + 1$
- Byzantine adversaries $b < \left[\frac{n}{4}\right] 1$, for n > 6

VES Results Comparison

Original Image

Perfectly Recovered Original Image with Waves Interference VES

Grey Recovered Original Image with Naor and Shamir VES

Conclusions and Future Directions

- Collaborative Secure Images Matching
- Grey scale and color images support

Alex Fok alexfok@post.bgu.ac.il